What goes into the process of receiving these therapies?
It’s a long road. It starts with a visit at a sickle cell disease center. If the physicians have not identified any big reasons why you should not be a candidate, you’ll be referred to a gene therapy team—these doctors also work with bone marrow transplants. They will ensure any medical issues before and after the therapy are accounted for.
Administrative and finance teams will work with you to ensure these therapies are covered. These are expensive products—about $2 million or so—and each gene therapy is an individual negotiation and contract between the insurance company and drug company.
If everything is approved, you’ll make an appointment to come into the hospital for a procedure called apheresis. It’s almost like dialysis, where you’re hooked up to a machine. Your blood is pulled into the machine where stem cells are extracted over a period of about six hours. The stem cells are sent off to a manufacturing facility where the drug company does the gene therapy. This could take up to six months.
When the product is ready, you’ll check into the hospital again. You’ll be given chemotherapy to kill off all the stem cells in your body that make blood. Once all the stem cells are gone, a bag containing the gene therapy gets transfused into you, and the modified cells find their way back into the bones and start making blood that doesn’t have sickle cell disease.
Similar to a bone marrow transplant, you’ll be in the hospital for four to six weeks, because you have no immune system following the transfusion, and the product takes about a month to get into your body. This would be the biggest danger period of the whole process. But after that, you leave the hospital pretty much cured of sickle cell disease, though you might have to come back for several checkups.
What are some risks associated with the gene therapies?
Like in bone marrow transplant, the involvement of chemotherapy does carry a small risk of death. And there is a small risk of secondary cancers from the chemotherapy. It is very likely a person opting for this therapy might not be able to have children afterward unless you preserve your eggs or sperm. After the therapy, you would have to be careful for a while because your immune system is still reconstituting itself, and a simple case of influenza can make you much sicker than it normally would.
Who might be ideal for this sort of therapy?
The sickest of patients would be too frail to undergo chemotherapy, and a patient with mild disease wouldn’t find the risk-benefit attractive. It would essentially be someone with severe disease who isn’t responding well to current available drugs, but is strong enough to undertake the risk of chemotherapy to not have sickle cell disease anymore.
In adult medicine, we have moved away from paternalism, so our approach is: if you have sickle cell disease, and you understand the procedure, risks, and alternatives, and you still want to opt for the gene therapy, we will support you and do our best to help you succeed. It’s a shared decision-making process with the patient to make sure they understand what they’re getting themselves into.
In children for whom this therapy is appropriate, it’s a different approach. It’s more a medicine-based approach, where you only reach for the extreme care when you’ve exhausted all other options and you can say with relative certainty that the child would otherwise be certain to experience bad outcomes. An example would be if a child had had a stroke after maximal treatment and continued to have another stroke, then a transplant or gene therapy could be considered.
There might be many who would not opt for this, given that there are many good treatments that could help manage the condition, as well as more drugs in development. But these gene therapies open up options for a tremendous number of people. They are a cure for sickle cell disease as much as a bone marrow transplant is considered a cure. We know from bone marrow transplant patients who have lived decades after the procedure that the benefit continues to be a durable effect for the rest of their life. While we can’t predict how patients will fare decades down the road, since the first patients for these gene therapies got them in 2014, we are hopeful they will see similar durable benefit as well.