Study Reveals Common Genetic Changes Are Significant in Autism

Genetic changes are responsible for roughly 60 percent of the risk for autism, and most of these variants are commonly found in the general population, according to a groundbreaking study led by Joseph D. Buxbaum, PhD, Director of the Seaver Autism Center for Research and Treatment, and Professor of Psychiatry, Neuroscience, and Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai.

The remaining nongenetic factors that account for roughly 40 percent of the risk for autism are not known. However, environmental factors and the interaction between genes and the environment may be a part of these nongenetic factors, says Dr. Buxbaum, the G. Harold and Leila Y. Mathers Research Professor of Geriatrics and Adult Development at Icahn School of Medicine.

(more…)

Molecular Autism receives highest Impact Factor

On July 29, 2014, Thomson Reuters awarded an Impact Factor of 5.486 to the open access journal Molecular Autism. This represents the highest Impact Factor for any journal dedicated to autism or related neurodevelopmental conditions.

The journal was created in 2010, by Professor Joseph Buxbaum, Director of the Seaver Autism Center and Professor of Psychiatry, Neuroscience, and Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, and Professor Simon Baron-Cohen, Director of the Autism Research Centre at the University of Cambridge. The goal of the journal was to provide an outlet for the volume of exciting genetic and other molecular autism research papers, and to make this cutting-edge autism research available freely via open access. In the past four years, Molecular Autism has grown and now publishes approximately five articles per month.

(more…)

Restoring fading memories

Research in Mark Baxter’s laboratory, the Glickenhaus Laboratory of Neuropsychology, focuses on the neural systems underlying memory and other higher cognitive functions, and understanding how disturbances in these systems impair cognitive function in brain disorders. Our general approach is to study the effects on behavior of specific manipulations of neural circuits in animal models, to gain insight into how similar disruptions in human disease may be responsible for cognitive impairment.

(more…)

Making an Old Brain More Plastic

We all know that it is easier to learn a new language or musical instrument as a child rather than in adulthood. At no other time in life does the surrounding environment so potently shape brain function – from basic motor skills and sensation to higher cognitive processes like language – than it does during childhood. This experience-dependent process occurs at distinct time windows called “critical periods”, which are times of great opportunity but also of great vulnerability for the developing brain. Early disruption of proper sensory or social experiences will result in mis-wired circuits that will respond sub-optimally to normal experiences in the future. Comparable effects are also seen for the development of vision, where if a child’s binocular vision is compromised and not corrected before the age of eight, amblyopia (‘lazy eye’) is permanent and irreversible.

(more…)

Pin It on Pinterest